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SYNOPSIS 

The longitudinal dynamic response of a two-dimensional cavity im-
bedded in an elastic half-space subjected to plane, horizontally polar-
ized shear waves has been studied using an integral equation formula-
tion. The response on the cavity surface is found in terms of a 
steady-state response ratio with the response of the free surface. Re-
sults are presented for several different angles of incidence in the 
exciting plane wave. Also, a shallow, intermediately deep, and deep 
cavity are studied to examine the effect of depth. Comparisons are 
made between the diffracted displacement field on the cavity and the 
incident, undiffracted field. At very low frequencies, that is waves 
whose length are large compared to cavity dimensions, diffraction ef-
fects are minimal. This suggests that for most applications, the inci-
dent field very closely approximates that which considers the diffrac-
tion effects. 

RESUME 

Dans cet article, on presente les risultats d'une etude sur la 
reponse dynamique d'une cavite souterraine plane, sise dans un espace 
elastique soumis a des ondes de cisaillement planes et horizontales. 
On a etudie plusieurs angles d'incidence de l'onde excitatrice de 
mime que l'effet de la profondeur de la cavite. On a compare le 
champ des deplacements diffractes sur la cavite au champ incident non 
diffracts. A basses frequences, c'est-i-dire lorsque la longeur des 
ondes est grande comparee aux dimensions de la cavite, les effets de 
la diffraction sont minimes. Par consequent, pour la plupart des 
applications, le champ incident ressemble beaucoup au champ diffracts. 
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INTRODUCTION 

In recent years, there has been much interest in the underground 
siting of critical installations in seismically active areas. This 
necessitates consideration of the effects of seismic waves on such in-
stallations to guard against the failure of the host medium in the vi-
cinity, to design the tunnel lining against overstressing, and to pre-
dict the shaking of the contents to adequately safeguard against dam-
age. Observations of shaking effects and damage to many different 
kinds of underground facilities suggest seismic waves are much less 
damaging to them than to surface structures. However, a paucity of 
strong motion data in and around underground installations requires an 
analytical approach rather than an empirical one. Suitable, simple, 
mathematical models of the underground installation, the surrounding 
earth and the seismic wave excitation, that retain the physical sub-
tleties and that can be applied to real situations, are needed. Thus 
it is important to study various applicable models leading to better 
understanding of the phenomenon. 

This study deals with the dynamic response of a two dimensional 
cavity in an elastic half-space. The cavity is of circular cross sec-
tion. Its axis lies at a finite distance from and parallel to the free 
surface of the half-space. The seismic excitation is represented by a 
plane, horizontally-polarized shear wave of arbitrary angle of inci-
dence. Its displacement component is parallel to the infinite dimen-
sion of the cavity and, of course, parallel to the free surface. This 
is schematically shown in Figure 1. The plane wave and cavity response 
have harmonic time dependence. 
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The displacement response of the cavity is related to the dis-
placement response of the free surface in the absence of any cavity in 
the medium. This response is expressed as a frequency dependent ratio 
depending on two dimensionless parameters: the angle of incidence of 
the impinging wave, and the depth to radius ratio of the cavity. Hav-
ing determined this response ratio for appropriate values of these 
parameters, arbitrary ground motion is easily handled by Fourier syn-
thesis. 

A large number of excellent papers, treating the scattering of 
plane seismic waves by cylindrical holes and rigid inclusions, have 
appeared in the literature; however, no studies have been reported on 
the scattering of seismic waves by scatterers embedded in a half-space. 
The scattering of compressional waves by a rigid cylinder in a full 
space was studied by Gilbert and Knopoff (1). They obtained the exact 
solution in integral form, which they evaluated asymptotically for an 
estimate of first motions. Gilbert (2) presented the scattering of P, 
SV, and SH waves by a cavity of circular cross section in a full space 
similarly looking at first motions. Banaugh and Goldsmith (3) studied 
the scattering of plane steady-state acoustic waves by cavities of 
arbitrary shape embedded in a full space using an integral equation 
formulation. The transient response of an elastically lined circular 
cylinder in a full space excited by a plane compressional wave was 
given by Garnet and Crouzet-Pascal (4). In a very thorough study, Mow 
and Pao (5) treat both transient and steady-state diffraction problems 
of all wave types by various scatterer configurations, and using all 
the different solution techniques. Their work also contains an excel-
lent bibliographic review of previously published studies. 

Other studies worthy of mention include a very recent paper by 
Niwa et al (6) which deals with the transient stresses around a tun-
nel, lined or unlined, using the integral equation method. They ob-
tain a good comparison with the results of Garnet and Crouzet-Pascal 
(4). This paper also treats the full space problem as do all the pre-
viously cited works. There are publications by Dowding and Rozen (7) 
and Rozen (8) presenting the results of earthquake damage surveys. 
Glass (9) summarizes previous closed form solutions for lined circular 
cavities and uses the finite element method to extend these analyses to 
adjacent unlined cavities. Finally, other studies have been performed 
at the University of Illinois at Urbana, for example, Yoshihara et al 
(10), which were not available for review by this time. The above-
mentioned publications are not a complete bibliographic review, but 
they serve to highlight the background for this study. 

The integral equation method was chosen herein to evaluate the 
response of the two dimensional cavity. The integral equation has 
been formulated by use of the appropriate form of the Green's function 
for the half-space, thereby satisfying the stress-free conditions on 
both the free surface of the half-space and on the surface of the cav-
ity. The integral equation is discretized, casting it in a matrix 
form of a system of linear equations with complex coefficients. The 
system is solved for impinging plane waves of several angles of inci-
dence. Although not done in this investigation, this procedure is 
readily adaptable to lined cavities of arbitrary shape. 
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FORMULATION OF THE PROBLEM 

Consider the displacement field in the half-space as excited by a 
plane, horizontally polarized shear wave of angle of incidence 0 mea-
sured between the normal to the wave front and the outward normal to 
the free surface at x2 = 0. The total incident displacement in the 
half-space due to this wave and the reflected wave from the free sur-
face can be given by 

6

11) . 
xl sine 

U3(xl, x2; w) = U3(w) cos x2  cos0 e
-1—  
6 (1) 

where w is the circular frequency of the exciting plane wave; 6 is the 
shear wave velocity in the half-space; xl and x2 are the horizontal 
and vertical Cartesian coordinates, resEctively,  as shown in Figure 
1; i is the imaginary number equal to i-l; and U?(w) is the Fourier 
transform of the displacement time history in the absence of the cavity 
as observed at the point 0, designated as the origin of coordinates 
(x1 = 0, x2 = 0). The exciting wave is propagating to the left in the 
positive sense of xl. The time dependence used herein is elut. 

The cavity, of radius ro, is located with its center at depth 
x2  = d from the free surface. Notice that the cavity center is di-
rectly beneath the point 0. 

Introducing a cylindrical polar coordinate system whose origin is 
at the cavity center, let the relation to the original Cartesian system 
be given by 

x1 = sinlp (2) 

x2  = d + r cost') (3) 

in which the polar angle IP is measured clockwise starting from the 
x2-axis as shown in Figure 2, and r is the polar distance given by 

r  =
1

(x2 - d)2 (4) 

Using these new coordinates, the incident wave field, given in Equation 
(1),can be expressed alternately by 

U3(r, ti); w) = U3(w) cos 
6  
— cose [d + r costd e 6 

.w r sintp sine
(5) 

Introducing the appropriate form of the Green's function for this 
problem, it is given in the Cartesian coordinates by 

= 
 1

H(2)(111(xl 1)2  4p 0 13
(x2 - 2 2  G

33(xi, x2, Clr C2r w) 

+ H( )(,) 11(xl  — E1 ) 2  + (x2  + C2))] 
o 

(6) 

where p is the shear modulus of the half-space;i and E2 are the co-
ordinates of the source point and 1.1(?,(Z) is the Hankel function of zero 
order, second kind of argument Z. Specifically, Equation (6) gives 
the displacement component in the direction 3 at point (x1, x2) due to 



209 

a line force acting in direction 3 at (1, 2) for the harmonic com-
ponent of frequency w. Notice that the second Henkel function in 
Equation (6) gives the contribution from an image source representing 
the effect of the free surface at x2  = 0. 

Using the new coordinates, the Green's function given in Equation 
(6) can be rewritten as 

G33(r, 71), P, 71; co) = IH()( 6 oj + H(2)(2-j R)] 
4p o   

in which the source-observation point distance is 

R =1Jr2 p2 - 2rp cos(th-n) 

and the image source-observation point distance is 

R* = [r2 02 
11/2 d dp 

+ 2rp cos(0+n) + 4 r2  1 + costh + cos) 

The coordinates p and n are the source point cylindrical polar radial 
distance and angle respectively, analogous to r and i  of the observa-
tion point. 

The problem of determining the response of the cavity surface, due 
to any impinging wave, can be found in the solution to the following 
integral equation, see Mow and Pao (5): 

U3(r
o
, th) = U3(r

o
, 

2 

- jru3(r )) — G (r 
o' Dri 33 o' ' 

th 
1  P = ro

, )) dA(n) 
A   

where A denotes the surface area of the cavity, and n is the outward 
normal to the cavity surface. In Equation (10), the frequency w in 
the function arguments has been omitted for convenience. The solution 
of Equation (10), U3(r, n), then, is the desired displacement re-
sponse of the cavity perimeter due to the incident wave U-i(ro, th). 
Equation (10) can be discretized replacing the integral with a sum 

uji(r
o
, .0j) 

N 
_ a - 2  U3(r 

o, 4).) + proAnE 
1 
 U3(r

o
, nm) -57-3  G33(ro, 0i, ro, nm) 

m= 

in which the sum on m replaces the surface integral, the incremental 
area becomes 

27 
dA01) = r

o
An = r — 

o N 

and the normal derivative is given by the negative of the radial deri- 
vative. This term can be determined from Equation (7) for m j as 

(10) 

(12) 
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and for m = j after using the appropriate asymptotic form for the 
Hankel function 

a iw iw 
G33 (r , r n.) =  

3p 33 o 3 o' 3 48 Trwr 
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Figure 3 graphically depicts the discretization scheme for N = 8. 

The incident wave expression of Equation (5) can also be evaluated 
at the same discretization points. This yields 

tii3(1.1p.)... ,A
mc

m
s

ol
omse m

"
we

-iLir
o

sinly.sin8 
o' 3 8

(15) 

Substitution of Equations (13), (14), and (15) into Equation (11) leads 
to a N x N system of linear equations in U3(r

0'j
)  with complex coef-

ficients. 

NUMERICAL EVALUATION 

The solution of the set of equations described above was performed 
using a complex Gaussian elimination procedure. The number of discre-
tization points used varied with the frequency of the wave motion. For 
values of wr

o/13 between zero and 0.4, 16 points were used in the dis-
cretization. In the interval 0.4 to 0.6, 32 points were used. Finally 
from 0.6 to 1.0, 64 points were used. This scheme was selected to 
assure a sufficient number of points per wave length especially for 
the higher frequency range. The accuracy of the discretization tech-
nique used here was not studied. This consideration has been reported 
elsewhere (3,5). The Gaussian elmination solution technique, however, 
was verified to have an accuracy of 5 x 10-13  compared to 1.0. 

(14) 
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RESULTS 

The response of the cavity U3(r
o
,lpi), as defined by Equation (11), 

was put in dimensionless form before solution. Dividing it by the 
Fourier transform of the surface motion OM leads to a system of 
equations in the response ratios for the discretization points on the 
circumference of the circle to the origin point above on the free sur-
face. This division conveniently removes the dimensionality of Equa-
tion (11). Thus, the solution has been generalized for any arbitrary 
time dependence associated with the incident wave. A spectral multi-
plication of the response ratio for the point on the cavity surface 
with the Fourier transform of the time history to be assigned to the 
surface motion results in the Fourier transform of the response of that 
point. A Fourier inversion yields the corresponding response time 
history. 

The response ratio obtained in the solution of the discretized 
integral equation is for a particular value of the frequency. The 
system of equations was repeatedly reconstructed and solved for a num-
ber of different frequency values permitting a reasonably smooth re-
sponse curve to be plotted. As an example of the kind of results ob-
tained therein, Figure 4 shows the response ratio values around the 
circumference of the circle for four different angles of incidence of 
the impinging wave. Both the real and imaginary parts are displayed, 
inward towards the circle center being a positive value. The fre-
quency, expressed in a dimensionless form as 

SZ = wr
o
/13 (16) 

for the response depicted in Figure 4, has the value 0.4. The depth 
to radius ratio, d/r, is 6. Notice that for 0°  angle of incidence the 
cavity response is symmetric about the vertical centerline as should 
be expected. As the angle of incidence changes to a more horizontally 
impinging wave the response becomes more symmetric about the horizontal 
centerline, although it never achieves this symmetry because of the in-
fluence of the reflected wave from the free surface. For the 90°  an-
gle, the real part appears fairly symmetric across the horizontal cen-
terline; whereas the zero crossing of the imaginary part is clearly 
shifted from the vertical line passing through the circle's center. 

Figure 4 also shows the completeness of the solution obtained 
from the integral equation method used in this work. The response of 
all points around the circumference of the cavity are obtained as the 
system of equations is solved. This is a very desirable feature of 
the method since the response point of interest may depend on the par-
ticulars of the application. 

Figure 5 presents response ratios for the point on the cavity bot-
tom. These are displayed versus the dimensionless frequency 0 defined 
in Equation (16). Three depth to radius ratios are shown, namely: 6, 
20, and 100. These represent a shallow, intermediately deep, and a 
deep cavity. The results for four angles of incidence, 0°, 30°, 60°, 
and 90°, are plotted. The range of dimensionless frequency for which 
the ratios have been displayed is between zero and 1.0 for the depth 
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to radius ratios of 6 and 20. For the depth to radius ratio of 100, 
the dimensionless frequency range is between zero and 0.1. This dif-
ferent range in the latter case was chosen because, at the same scale, 
the curves would be very difficult to distinguish due to their many 
oscillations. The behavior of the curves are clearly seen as plotted. 
Notice that the imaginary parts amplitudes of these first two response 
ratios increase slowly from negligibly small values near zero frequency 
to significant values in the vicinity of 0 = 1. The imaginary part, on 
the other hand, for the deep cavity d/r

o 
 = 100, is negligible, less 

than 0.01 in the range shown. For this reason, it was not plotted. 

For most applications the dimensionless frequency range 0<2<1.0 
should be adequate. For example, for tunnels of radius 10 feet or less 
in a medium with a shear wave velocity of greater than about 700 feet 
per second, the circular frequency range 0<w<207 will be covered. This 
frequency range incorporates most of the significant frequency content 
in recorded strong motion accelerograms. For smaller tunnel radius or 
for larger shear wave velocity, this frequency range will be extended 
considerably. The 700 feet per second shear wave velocity is surely 
very low for rock-type earth material in which an unlined tunnel could 
be constructed. 

Examination of the diffraction of the SH wave around the cavity is 
also of interest in this study. To this end, a comparison is made be-
tween the response at the bottom of the cavity and the motion at that 
same point in the absence of the cavity. This undiffracted field is 
given by Equation (1) in which xl  = 0, and x2  = d+r. Of course, as 
in the previous treatment, Equation (1) is first normalized by divid-
ing by the quantity U3(w). This results in the cosine factor remain-
ing as defining the unscattered field at that point. This represents 
both the incident plane wave front and the front reflected from the 
free surface. Figure 6 gives the comparison between this normalized 
incident field and the cavity bottom response which includes scatter-
ing versus the dimensionless frequency 0. Two angles of incidence are 
shown, 0°  and 60°, for two depth-to-radius ratios 6 and 20. In all 
cases, at low frequencies the incident field is very close to the 
field which includes scattering. The curves slowly diverge as the fre-
quency increases. Even as the frequency approaches 1.0, the incident 
field curves are fairly close to those including scattering. The dif-
ference shown here between these curves is due to the effect of scat-
tering. It should be noted that the imaginary part of the incident 
field is identically zero. Thus, a comparison between it and the 
imaginary part of the response ratios in Figure 5 has not been made. 
The same comparison for the deep cavity of depth to radius ratio of 
100 was also made. However, these results were not shown on this fig-
ure because the difference between the incident and scattered field was 
so slight that they could not be distinguished in a plot. Then, for 
practical purposes it can be concluded that in the frequency range 
0<0<0.1 the incident and diffracted field are the same for this case. 
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DISCUSSION 

The comparison in Figure 6 suggests that the cavity response can 
be quickly estimated in the low frequency range by the incident wave 
field. This is indeed true for the deep case, d/ro  = 100, displayed 
here. For the other two cases, this suggested estimation procedure is 
still valid for the low frequency range. How far out on the frequency 
scale that this estimate can be used, will depend on the acceptable 
error. The divergence between these curves in Figure 6, then, are a 
measure of this error. Scanning the curves, and deciding the frequency 
beyond which the difference is unacceptable will define the acceptable 
low frequency approximation range. Using the incident field will, how-
ever, never yield an imaginary part. Recovering an estimate for it 
requires higher order approximation techniques. These will not be con-
sidered in this study. 

Other response quantities in this problem that are frequently of 
interest are the shear stresses or strains in the medium around the 
cavity. These have not explicitly been obtained in this study. They 
can be found, for example, using a finite difference scheme from the 
discretized response that has been evaluated. 

A distinct advantage of the steady-state formulation by-the 
integral equation method,with the subsequent numerical solution, is 
that the earth material surrounding the cavity can readily be made 
visco-elastic by the addition of a frequency dependent imaginary part 
to the material modulus. The choice of frequency dependence will 
correspond to a particular material damping mechanism. The usual de-
pendence chosen for earth materials is a small constant, independent 
of frequency which is the functional form for constant hysteretic 
damping. Incorporation of this feature will not conceptually change 
either the formulation or solution technique. It does introduce a 
complex shear wave velocity which requires the evaluation of the Hankel 
functions for complex arguments. The discretization and resulting 
system of linear equations can be handled in the same manner as already 
described for the case without visco-elasticity. Another important 
advantage of the integral equation method is that the radiation of the 
scattered wave field is correctly incorporated in the solution through 
the use of the Green's function. This contrasts the inability of 
lumped parameter methods, such as finite element or finite difference, 
which model a region around the cavity with finite elements or a finite 
difference grid to some distance away. These methods have a built-in 
difficulty with the radiation of the scattered field as it tends to be 
reflected back from the outer boundaries of the modelled region to the 
vicinity of the cavity thereby contaminating the response of the area 
under scrutiny. Moreover, these methods usually do not have a built-
in mechanism to specify the excitation as an arbitrary wave form easily 
described in seismological terms. The wave form in the formulation 
used here is built-in and does not add to the difficulty of the problem 
or its solution. Another disadvantage of the finite element and finite 
difference methods is that they use a transient technique in which a 
particular time dependence must be assigned to the excitation. This 
means that the solution procedure must be repeated for different time 
dependent excitation forms. With the steady-state method used here, 
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Fourier synthesis can provide for arbitrary time dependence in the in-
cident wave as already discussed. 

CONCLUSION 

The problem of a buried circular cavity in half-space subjected 
to horizontally polarized shear waves of arbitrary angle of incidence 
has been studied. The steady-state response of the cavity expressed 
in terms of the free surface motion has been evaluated for a shallow, 
intermediate and deep cavity. Four angles of incidence have been con-
sidered for the excitation giving the effect of the full variation of 
this parameter. Comparisons between the response of the cavity in-
cluding diffraction and the incident wave field, which represent the 
motion without these effects, have been presented. These comparisons 
suggest that for low frequencies, the diffraction effects are small, 
and cavity response can be estimated by the incident, unscattered 
motion. 

Future research in this field should include examination of damp-
ing in the earth medium, lining on the cavity, and an arbitrary shape 
for the cavity cross section. Also, the problems of compressional and 
in-plane shear wave excitation of arbitrary angles of incidence, and 
Rayleigh waves, should be investigated. 
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1. The cavity, coordinates and excitation. 
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